ЛЕКЦИЯ 4

Обзор алгоритмов Decision Tree, Random Forest, XgBoost, CatBoost, AdaBoost для выявления DDoS атак

КЛАССИФИКАЦИЯ

Алгоритмы машинного обучения:

- Дерево решений (Decision tree);
- Случайный лес (Random forest);
- XGBoost;
- CatBoost;
- AdaBoost

Сбор данных

На этом этапе формируется датасет с трафиком сети, который включает как нормальный, так и вредоносный трафик (DDoS-атаки). **Источники данных:**

- Лог-файлы серверов
- Захват трафика с помощью Wireshark, Tcpdump
- Датасеты, например, CICDDoS2019, NSL-KDD, CAIDA DDoS
- Мониторинг в реальном времени через SNMP, NetFlow, sFlow

Параметры трафика:

- IP-адреса отправителя и получателя
- Число пакетов за единицу времени
- Размер пакетов
- Количество соединений с одним IP
- Используемые протоколы (TCP, UDP, ICMP)
- Время жизни соединений (TTL)

	index	Unnamed: 0	Flow ID	Src IP	Src Port	Dst IP	Dst Port	Protocol	Timestamp	Flow Duration	 Fwd Seg Size Min	Acti Me
0	1886844	1811706	172.31.0.2-172.31.67.82-53-59931-17	172.31.67.82	59931	172.31.0.2	53	17	20/02/2018 10:44:37	20349	 8	
1	1667897	4243700	172.31.66.81-13.89.190.129-49673-443-6	172.31.66.81	49673	13.89.190.129	443	6	20/02/2018 12:01:12	77452	 20	1
2	2590662	2634346	172.31.64.87-209.85.203.132-50315-443-6	209.85.203.132	443	172.31.64.87	50315	6	20/02/2018 09:31:35	21010	 20	
3	2619695	25116	172.217.6.193-192.168.10.12-80-41588-6	192.168.10.12	41588	172.217.6.193	80	6	03/07/2017 06:16:17 PM	5436329	 0	
4	2387220	3687623	172.31.0.2-172.31.66.28-53-51056-17	172.31.66.28	51056	172.31.0.2	53	17	20/02/2018 09:04:25	70607	 8	
3186677	1081031	1473462	172.31.69.25-18.219.193.20-80-40358-6	18.219.193.20	40358	172.31.69.25	80	6	16/02/2018 11:25:29 PM	13964	 0	
3186678	1649871	3439156	172.31.66.116-64.30.228.118-49756-443-6	172.31.66.116	49756	64.30.228.118	443	6	20/02/2018 08:33:35	128223	 20	1
3186679	1621073	4592346	172.31.67.12-216.58.198.66-49851-443-6	172.31.67.12	49851	216.58.198.66	443	6	20/02/2018 08:42:07	52905037	 20	
3186680	1886020	372111	192.168.10.25-23.194.182.12-59968-443-6	192.168.10.25	59968	23.194.182.12	443	6	03/07/2017 09:33:39 PM	3	 0	1
3186681	992532	1119466	172.31.69.25-18.219.193.20-80-47790-6	18.219.193.20	47790	172.31.69.25	80	6	16/02/2018 11:22:50 PM	15017	 0	

3186682 rows x 86 columns

Предобработка данных

• Сетевые данные, полученные на предыдущем этапе, должны быть очищены и приведены в удобный формат для машинного обучения.

Действия:

- Удаление дубликатов и неинформативных записей
- Очистка данных (устранение отсутствующих значений, обработка выбросов)
- Приведение категориальных данных к числовому виду (например, с помощью One-Hot Encoding)
- Нормализация и стандартизация (Min-Max Scaling, Standard Scaling)

```
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import MinMaxScaler
cat_cols = ['Flow ID', 'Src IP', 'Dst IP', 'Timestamp']
numerical_cols = list(set(DDoS.columns.values.tolist()) - set(cat_cols) - set(['Label']) - set(['Label_val']))
DDoS cat = DDoS[['Flow ID', 'Src IP', 'Dst IP', 'Timestamp']]
DDoS num = DDoS[numerical cols]
DDoS['Flow ID']
             172.31.0.2-172.31.67.82-53-59931-17
         172.31.66.81-13.89.190.129-49673-443-6
         172.31.64.87-209.85.203.132-50315-443-6
         172.217.6.193-192.168.10.12-80-41588-6
             172.31.0.2-172.31.66.28-53-51056-17
            204.46.57.85-192.168.0.2-9440-5000-6
99995
99996
         83.190.207.124-192.168.0.2-54034-5000-6
99997
         104.125.75.232-192.168.0.2-59426-5000-6
99998
         176.33.53.116-192.168.0.2-40697-5000-6
         159.101.32.120-192.168.0.2-52542-5000-6
Name: Flow ID, Length: 3286682, dtype: object
```

```
le = LabelEncoder()
```

```
le_list = []
```

```
le.fit(DDoS['Flow ID'])
DDoS_cat['Flow ID'] = le.transform(DDoS_cat['Flow ID'])
le_list.append(le)
le = LabelEncoder()
le.fit(DDoS['Src IP'])
DDoS_cat['Src IP'] = le.transform(DDoS_cat['Src IP'])
le_list.append(le)
le = LabelEncoder()
le.fit(DDoS['Dst IP'])
DDoS_cat['Dst IP'] = le.transform(DDoS_cat['Dst IP'])
le_list.append(le)
le = LabelEncoder()
le.fit(DDoS['Timestamp'])
DDoS_cat['Timestamp'] = le.transform(DDoS_cat['Timestamp'])
le_list.append(le)
```

Chi_square feature selection

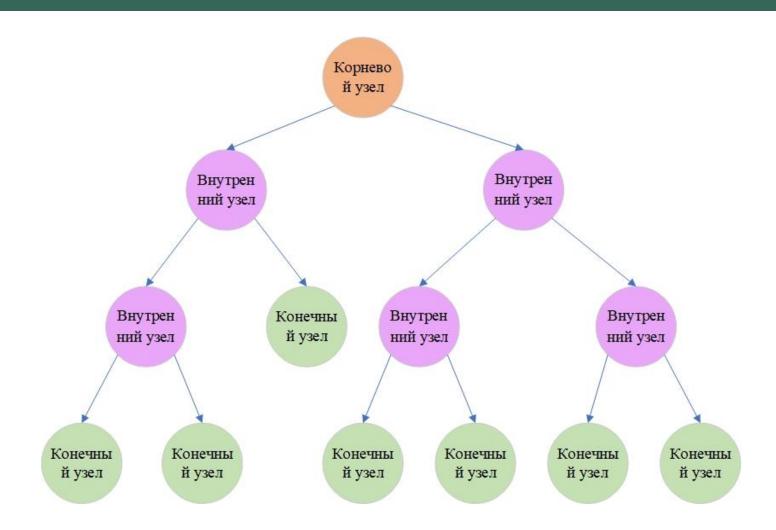
```
bestfeatures = SelectKBest(score func=chi2, k=20)
fit feat = bestfeatures.fit(DDoS scaled,DDoS['Label val'])
DDoS scores = pd.DataFrame(fit feat.scores )
DDoS columns = pd.DataFrame(DDoS scaled.columns)
featureScores = pd.concat([DDoS columns,DDoS scores],axis=1)
featureScores.columns = ['Specs', 'Score']
print(featureScores.nlargest(20, 'Score'))
                   Score
           388598.076703
           370244.162533
           220029.050536
           193953.300683
           145341.568751
           136127.520106
           128360.427367
           113455.768657
            87027.910555
            82895.984496
33
            82196.174561
51
            80343.230693
49
            74135.051586
58
            70569.787748
47
            57870.084500
            37909.910790
            35396.278029
            27414.719814
            21301 278043
```

- Разделение данных на обучающую и тестовую выборки
- Данные разделяются следующим образом:
- Обучающая выборка (Train Set): 70-80% данных
- Тестовая выборка (Test Set): 20-30% данных
- Дополнительно можно использовать **кросс-валидацию (k-fold cross-validation)** для более точной оценки моделей.

ДЕРЕВО РЕШЕНИЙ

Дерево решений— метод обучения с учителем, который использует набор правил для принятия решений подобно тому, как человек принимает решения. В данном методе данные разделяются на подмножества в зависимости от определенных признаков, отвечая на определенные вопросы до тех пор, пока все точки данных не будут принадлежать определенному классу. Таким образом, образуется древовидная структура с добавлением узла для каждого вопроса. Первый узел является корневым узлом (root node). При классификации документов на первом этапе выбирается слово, и все документы, содержащие его, помещаются в одну сторону, а документы, не содержащие его, помещаются в другую сторону. В результате образуются два датасета. После этого в этих датасетах выбирается новое слово, и все предыдущие шаги повторяются. Так продолжается до тех пор, пока весь датасет не будет разделен и присвоен конечным узлам. Если в конечном узле все точки данных однозначно соответствуют одному и тому же классу, то класс узла точно определен. В случае смешанных узлов алгоритм присваивает данному узлу класс с наибольшим числом точек данных, относящихся к нему.

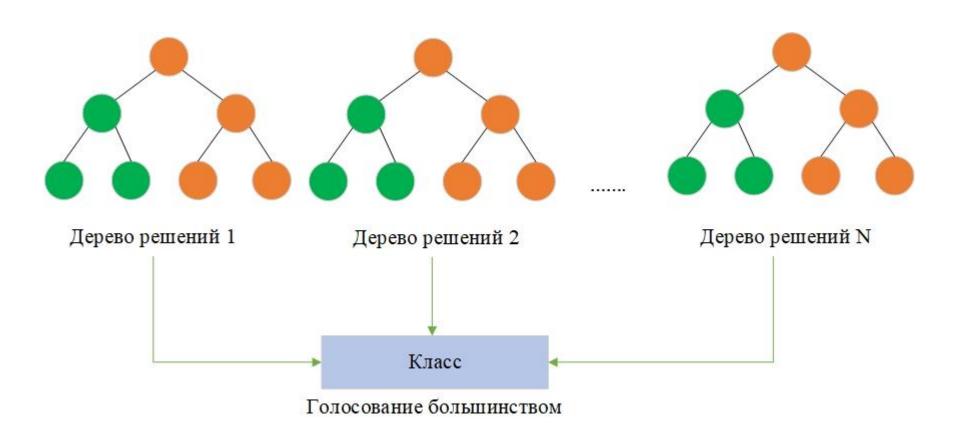
ДЕРЕВО РЕШЕНИЙ



СЛУЧАЙНЫЙ ЛЕС

- Случайный лес— популярный алгоритм машинного обучения, основанный на концепции ансамблевого обучения. В данной концепции несколько классификаторов объединяются для улучшения производительности модели. Случайный лес состоит не из одного, а из множества деревьев решений. В задачах классификации каждый документ независимо кдассифицируется всеми деревьями. Класс документа определяется на основе наибольшего числа голосов среди всех деревьев.
- Алгоритм случайного леса имеет следующий ряд особенностей и преимуществ:
- Довольно быстро обучается.
- Эффективно обрабатывает датасеты с большим числом признаков.
- Выполняет предсказание данных с очень высокой точностью.
- Показывает хорошую эффективность даже при наличии большого числа пропусков данных.
- Хорошо обрабатываются как непрерывные, так и дискретные признаки.
- Обладает высокой масштабируемостью.

СЛУЧАЙНЫЙ ЛЕС



XGBOOST

■ XGboost (eXtreme Gradient Boosting) — оптимизированный продвинутый алгоритм машинного обучения, использующий принцип бустинга. Он имеет хорошую производительность и решает большинство проблем регрессии и классификации. Использование ансамблевой техники подразумевает, что ошибки предыдущих шагов устраняются в новой модели. Отклонения прогнозов обученного ансамбля вычисляются на обучающем наборе на каждой итерации. Таким образом, оптимизация выполняется путем добавления новых древовидных прогнозов в ансамбль, уменьшая среднее отклонение модели. Эта процедура продолжается до тех пор, пока не будет достигнут требуемый уровень ошибки или критерий ранней остановки (максимальное количество деревьев или достижение заданной точности).

XGBoost

metrics list = []

```
classifiers = [MultinomialNB(), LogisticRegression(), DecisionTreeClassifier(criterion='gini', splitter='best', max depth=None),
RandomForestClassifier(n estimators = 10), xgb.XGBClassifier(random state=42), CatBoostClassifier(task type="GPU", devices='0'),
AdaBoostClassifier(n estimators=10)]
k = 0
for i in classifiers:
    i.fit(x train, y train)
    if k==4:
        pickle.dump(i, open('XGBoost ddos.sav', 'wb'))
    y pred = i.predict(x test)
    accuracy = accuracy_score(y_test, y_pred)
    precision = precision score(y test, y pred)
    recall = recall score(y test, y pred)
    f1 = f1 score(y test, y pred)
    fpr, tpr, threshold = metrics.roc curve(y test, y pred)
    roc auc = metrics.auc(fpr, tpr)
    metrics_list.append({'Accuracy': accuracy,
                        'Precision': precision,
                        'Recall': recall,
                        'F1-score': f1.
                        'fpr': fpr,
                        'tpr': tpr})
    print("Evaluation metrics of " + algorithms[k]+" algorithm: ")
    print('Accuracy: ', accuracy)
    print('Precision: ', precision)
    print('Recall: ', recall)
    print('F1-score: ', f1)
    k = k + 1
```

СПАСИБО ЗА ВНИМАНИЕ!!!